Progress to December 2002 Clarity Model, Stream Particles, In-lake Particles

Geoff Schladow UC Davis

Project Components

> Tahoe Clarity Model

Continued Model Development

Data compilation

Model Validation

Synthetic data set

Long term management scenarios

TMDL

> Aggregation (in lake)

Characterization of lake constituents

Epifluorescence microscopy

Confocal laser scanning microscopy

Flow cytometry

PSD

ICP-MS

Sediment traps and biofilm plates

> Streams

Characterization of stream constituents

PSD

ICP-MS

> Related Research

CARB Air Sample ICP-MS

USGS Groundwater PSD and ICP-MS

Other lakes PSD and ICP-MS

NASA Remote sensing

UCD Real-time meteorological network

DRI Near-shore turbidity

120°W 10 km Third Ck. Incline Ck. MIDLAKE Ward Ck. INDEX Glenbrook Ck.Lake Blackwood Ck.Logan House Tahoe Ck.General Ck. 39°N -Edgewood Ck. lake drainage basin Trout Ck. Upper Truckee R. area of detail California

10 LTIMP STREAMS

Questions

- Nature of particles organic vs inorganic?
 - Particle sizing and enumeration, serial filtration, ICPMS, flow cytometry
- Source of particles?
 - Streams, near shore turbid zones, air deposition
- Removal mechanisms role of bacteria in aggregation?
 - Analyze biological material in suspended lake aggregates Grow biofilms in the lake and check their composition Collect aggregates in sediment traps and study them noninvasively
- Transparency dynamics in water column?
 - In-lake observation

Nature of Particles Organic vs Inorganic

Lake Tahoe Clarity Model

DLM-WQ Components

Physical Sub-Model:

- Thermodynamics.
- Mixing Layer Dynamics.
- Hypolimnetic Processes.
- Inflows & Outflows.
- Ground Water.

Water Quality Sub-Model:

- Phytoplankton.
- Nutrients.
- Inorganic Particles.
- Oxygen.
- Atmospheric Deposition.
- Zooplankton & Mysis.

Optical Sub-Model:

- Absorption.
- Scattering.
- Link to Secchi Depth.

Input Data (WQ & Physical):

- Meteorological.
- Inflow (Rate & WQ).
- Initial Conditions.
- Physical Parameters.

Model Assumptions:

- Forcing Parameters.
- 1-D Assumption.

DLM-WQ Linkages

Optical Sub-Model Definition

Scattering by organic particles

Scattering by inorganic particles

Scattering by pure water

Absorption by pure water

Absorption by CDOM

Absorption by organic particles

Scattering

Photopic Response

Absorption

SecchiDepth = $\frac{\gamma}{(c + K_d)}$

1999 - 2001

Parameter Sensitivity

$$SecchiDepth = \frac{\gamma}{(c + K_d)}$$

$$c = a + b$$

$$a = a_{water} + a_{gelb} + a^*_{Chla} \cdot [Chla]$$

$$b = b_{water} + b_{sed} + b^*_{Chla} \cdot [Chla]$$

Optical Sub-Model Parameters

- 1. Constant (gamma)
- 2. Water absorption (aw)
- 3. Gelbstoffe absorption (ag)
- 4. Chl-a specific absorption (a*)
- 5. Water scattering (bw)
- 6. Chl-a specific scattering (b*)
- 7. Sediment scattering (bs)
- 8. Inorganic fraction (F)

Calibration of Optical Sub-Model

Validation of Optical Sub-Model

Things we need to help make Dave happy

- "Preliminary inputs" long before final reports
- Met data
 - Validation:reconstructed + hydrology to match lake level
 - Future scenarios next 50 years may not be like the last 50 years?
- Groundwater demarcation between direct lake input and stream input. Intervening zones?
- Nearshore Turbidity Zone are these stagnant hot spots? If not, what is flux?
- Stream particles, nutrients if important, plunge depth of streams?
- Aggregation
- Nutrients linkages between BAP and SRP/TP. Particle/BAP? maybe atmospheric particles too?
- Atmospheric particle loads, P-loads. Do controlled burns have an effect? Effect of a hot burn?
- Channel erosion
 - PSD and ICP-MS of erodable material
 - Linkage between Q, TSS, PSD
 - How factored in hydrology output
- Stormwater runoff
 - ICP-MS analysis
 - Intervening zones? Or hydrological model output
 - Bob Coates methodology for P, N and particles (for calibration, validation)
- BMP effectiveness early